🔏
Tech
  • 🟢App aspects
    • Software architecture
      • Caching
      • Anti-patterns
      • System X-ability
      • Coupling
      • Event driven architecture
        • Command Query Responsibility Segregation (CQRS)
        • Change Data Capture (CDC)
      • Distributed transactions
      • App dev notes
        • Architecture MVP
      • TEMP. Check list
      • Hexagonal arch
      • Communication
        • REST vs messaging
        • gRPC
        • WebSocket
      • Load balancers
      • Storage limits
      • Event storming
    • Authentication
    • Deployment strategy
  • Databases
    • Classification
    • DB migration tools
    • PostreSQL
    • Decision guidance
    • Index
      • Hash indexes
      • SSTable, LSM-Trees
      • B-Tree
      • Engines, internals
    • Performance
  • System design
    • Interview preparation
      • Plan
        • Instagram
        • Tinder
        • Digital wallet
        • Dropbox
        • Live video streaming
        • Uber
        • Whatsup
        • Tiktok
        • Twitter
        • Proximity service
    • Algorithms
    • Acronyms
  • 🟢Programming languages
    • Java
      • Features
        • Field hiding
        • HashCode() and Equals()
        • Reference types
        • Pass by value
        • Atomic variables
      • Types
      • IO / NIO
        • Java NIO
          • Buffer
          • Channel
        • Java IO: Streams
          • Input streams
            • BufferedInputStream
            • DataInputStream
            • ObjectInputStream
            • FilterInputStream
            • ByteArrayInputStream
        • Java IO: Pipes
        • Java IO: Byte & Char Arrays
        • Java IO: Input Parsing
          • PushbackReader
          • StreamTokenizer
          • LineNumberReader
          • PushbackInputStream
        • System.in, System.out, System.error
        • Java IO: Files
          • FileReader
          • FileWriter
          • FileOutputStream
          • FileInputStream
      • Multithreading
        • Thread liveness
        • False sharing
        • Actor model
        • Singleton
        • Future, CompletableFuture
        • Semaphore
      • Coursera: parallel programming
      • Coursera: concurrent programming
      • Serialization
      • JVM internals
      • Features track
        • Java 8
      • Distributed programming
      • Network
      • Patterns
        • Command
      • Garbage Collectors
        • GC Types
        • How GC works
        • Tools for GC
    • Kotlin
      • Scope functions
      • Inline value classes
      • Coroutines
      • Effective Kotlin
    • Javascript
      • Javascript vs Java
      • TypeScript
    • SQL
      • select for update
    • Python
  • OS components
    • Network
      • TCP/IP model
        • IP address in action
      • OSI model
  • 🟢Specifications
    • JAX-RS
    • REST
      • Multi part
  • 🟢Protocols
    • HTTP
    • OAuth 2.0
    • LDAP
    • SAML
  • 🟢Testing
    • Selenium anatomy
    • Testcafe
  • 🟢Tools
    • JDBC
      • Connection pool
    • Gradle
    • vim
    • git
    • IntelliJ Idea
    • Elastic search
    • Docker
    • Terraform
    • CDK
    • Argo CD
      • app-of-app setup
    • OpenTelemetry
    • Prometheus
    • Kafka
      • Consumer lag
  • 🟢CI
    • CircleCi
  • 🟢Platforms
    • AWS
      • VPC
      • EC2
      • RDS
      • S3
      • IAM
      • CloudWatch
      • CloudTrail
      • ELB
      • SNS
      • Route 53
      • CloudFront
      • Athena
      • EKS
    • Kubernetes
      • Networking
      • RBAC
      • Architecture
      • Pod
        • Resources
      • How to try
      • Kubectl
      • Service
      • Tooling
        • ArgoCD
        • Helm
        • Istio
    • GraalVM
    • Node.js
    • Camunda
      • Service tasks
      • Transactions
      • Performance
      • How it executes
  • 🟢Frameworks
    • Hibernate
      • JPA vs Spring Data
    • Micronaut
    • Spring
      • Security
      • JDBC, JPA, Hibernate
      • Transactions
      • Servlet containers, clients
  • 🟢Awesome
    • Нейробиология
    • Backend
      • System design
    • DevOps
    • Data
    • AI
    • Frontend
    • Mobile
    • Testing
    • Mac
    • Books & courses
      • Path: Java Concurrency
    • Algorithms
      • Competitive programming
    • Processes
    • Finance
    • Electronics
  • 🟢Electronics
    • Arduino
    • IoT
  • Artificial intelligence
    • Artificial Intelligence (AI)
  • 🚀Performance
    • BE
  • 📘Computer science
    • Data structures
      • Array
      • String
      • LinkedList
      • Tree
    • Algorithms
      • HowTo algorithms for interview
  • 🕸️Web dev (Frontend)
    • Trends
    • Web (to change)
  • 📈Data science
    • Time series
Powered by GitBook
On this page
  • Connection lifecycle
  • New connection create
  • Where to place the Database Connection Pool?
  • HikariCP

Was this helpful?

  1. Tools
  2. JDBC

Connection pool

PreviousJDBCNextGradle

Last updated 2 years ago

Was this helpful?

Connection lifecycle

New connection create

When a backend application connects to the PostgreSQL database, the parent process in the database server spawns a worker process that listens to the newly created connection. Spawning a work process each time also causes additional overhead to the database server. As the number of simultaneous connections increases, the CPU and memory resources of the database server also increase

Where to place the Database Connection Pool?

Advantages

  • Low latency since the pool is on the same box as the requester

  • Better security since the connections are constrained to one client

Drawbacks

  • It can be difficult to monitor and control connections if we use too many microservices

The connections are created in the Connection pool by software like PgBouncer and all the microservice instances will share those.

Pros:

  • Flexible — database can be swapped out

  • Centralized control of connections, which makes it easier to monitor and control connections

Cons:

  • Introducing a new layer. could add latency

  • Single point of failure for database calls across all clients

  • Potential security issues since you are sharing connections between layers

  • minimum idle property

    • The property controls the minimum number of idle connections that HikariCP tries to maintain in the pool, including both idle and in-use connections. If the idle connections dip below this value, HikariCP will make a best effort to restore them quickly and efficiently

Pool with smaller size performs better than with bigger size

connections = ((core_count * 2) + effective_spindle_count)

HikariCP

for the best performance in response to spike demands, HikariCP recommends a fixed-size pool

given a single CPU resource, executing A and B sequentially will always be faster than executing A and B "simultaneously" through time-slicing

🟢
⭐
Github page with benchmarks
LINK
LINK